Spatial variability of summertime tropospheric ozone over the continental United States: Implications of an evaluation of the CMAQ model
نویسندگان
چکیده
This study evaluates the ability of the Community Multiscale Air Quality (CMAQ) model to simulate the spatial variability of summertime ozone (O3) at the surface and in the free troposphere over the continental United States. Simulated surface O3 concentrations are compared with 987 Air Quality System (AQS) sites and 123 Clean Air Status and Trends Network (CASTNet) sites. CMAQ’s ability to reproduce surface observations varies with O3 concentration. The model best simulates observed O3 for intermediate concentrations (40–60 ppbv), while over-(under-) predicting at lower (higher) levels. CMAQ reproduces surface O3 for a wide range of conditions (30–80 ppbv) with a normalized mean error (NME) less than 35% and normalized mean bias (NMB) lying between 715% for the whole domain. Although systematically over-predicting O3 in the east and under-predicting it in the western United States, CMAQ is able to reproduce 1and 8-h daily maxima with a cross-domain mean bias (MB) of 1 and 8 ppbv, or NMB of 8% and 25%, respectively. The model underestimates observed O3 at rural sites (MB 1⁄4 5 ppbv, NMB 1⁄4 5% and NME 1⁄4 23% with a 40 ppbv cut-off value) and over-predicts it at urban and suburban sites by a similar magnitude (MB 1⁄4 6 ppbv, NMB 1⁄4 7% and NME 1⁄4 25%). Apparent errors and biases decrease when data is averaged over longer periods, suggesting that most evaluation statistics are dependent on the time scale of data aggregation. Therefore, performance criteria should specify an averaging period (e.g., 1or 8h) and not be independent of averaging period as some current model evaluation studies imply. Comparisons of vertical profiles of simulated O3 with ozonesonde data show both overestimation and underestimation by 10–20 ppbv in the lower troposphere and a consistent under-prediction in the upper troposphere. Vertical O3 distributions are better simulated when lateral boundary conditions obtained from the global Model of Ozone and Related Tracers version 2 (MOZART-2) are used, but under-prediction remains. The assumption of zero-flux at the top boundary and the resulting exclusion of the contribution of stratosphere–troposphere exchange to tropospheric O3 concentrations limit the ability of CMAQ to reproduce O3 concentrations in the upper troposphere. r 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
A comparison of CMAQ-based aerosol properties with IMPROVE, MODIS, and AERONET data
[1] Evaluation of concentrations predicted by air quality models is needed to ensure that model results are compatible with observations. In this study aerosol properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations are compared with routine data from NASA satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard ...
متن کاملThe effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States
The impact of marine isoprene emissions on summertime surface concentrations of isoprene, secondary organic aerosols (SOA), and ozone (O3) in the coastal areas of the continental United States is studied using the U.S. Environmental Protection Agency regional-scale Community Multiscale Air Quality (CMAQ) modeling system. Marine isoprene emission rates are based on the following five parameters:...
متن کاملTropospheric ozone variability over the Mediterranean
Summertime tropospheric ozone variability over the Mediterranean basin observed with IASI C. Doche, G. Dufour, G. Foret, M. Eremenko, J. Cuesta, M. Beekmann, and P. Kalabokas Laboratoire Inter-universitaire des Systèmes Atmosphériques (LISA), Universités Paris-Est Créteil et Paris Diderot, CNRS, Créteil, France Academy of Athens, Research Center for Atmospheric Physics and Climatology, Athens, ...
متن کاملProbing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ simulation and evaluation using surface and satellite data
[1] As part 1 in a series of papers describing long-term simulations using the Community Multiscale Air Quality (CMAQ) modeling system and subsequent process analyses and sensitivity simulations, this paper presents a comprehensive model evaluation for the full year of 2001 over the continental U.S. using both ground-based and satellite measurements. CMAQ is assessed for its ability to reproduc...
متن کاملEffects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States
[1] We use a global chemical transport model (GEOS-Chem) driven by a general circulation model (NASA Goddard Institute for Space Studies GCM) to investigate the effects of 2000–2050 global change in climate and emissions (the Intergovernmental Panel on Climate Change A1B scenario) on the global tropospheric ozone budget and on the policy-relevant background (PRB) ozone in the United States. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006